Resumo: Estudos, in vitro e in vivo, foram conduzidos para avaliar o potencial da linhaça em transferir lignanas mamíferas para o leite. No Primeiro Experimento, semente e casca de linhaça foram incubadas para determinar, in vitro, a conversão de lignanas vegetais em lignanas mamíferas (enterolactona e enterodiol) pela microflora ruminal e fecal. A concentração de lignanas vegetais na semente e na casca de linhaça foi em média 9,2 e 32,0 nmol mg-1, respectivamente. A maior produção de enterodiol, à 72h e 96h de incubação, foi obtida com casca de linhaça incubada com o inóculo fecal. Não houve diferença na produção de enterodiol entre a casca e a semente de linhaça nas primeiras 24h de incubação. Em geral, a produção de enterolactona no decorrer das 96h foi significativamante maior para a casca e a semente de linhaça incubadas com o inóculo ruminal do que com o inóculo fecal. A produção de enterolactona à 72h e 96h de incubação foi maior para a casca do que para a semente de linhaça. No Segundo Experimento, conduzido in vivo, quatro vacas da raça Holandesa em lactação foram distribuídas em um delineamento em quadrado latino 4 x 4 nos seguintes tratamentos: controle sem casca de linhaça (CO), controle com casca de linhaça (CL), monensina (16 ppm) sem casca de linhaça (MO), e monensina (16 ppm) com casca de linhaça (CM). A digestibilidade aparente da PB foi maior para as dietas que continham casca de linhaça e para as dietas suplementadas com monensina sódica. Um aumento significativo da digestibilidade do extrato etéreo foi observado para os tratamentos com casca de linhaça comparados com os tratamentos sem casca de linhaça. O fornecimento de casca de linhaça aumentou as concentrações de ácidos graxos trans totais, ácidos graxos mono-insaturados, poliinsaturados, de cadeia longa, n-3 total e a razão poli-insaturados/saturados na gordura do leite. A razão n-6/n-3 na gordura do leite foi menor para as vacas que receberam casca de linhaça em comparação àquelas que não a receberam. A suplementação com monensina sódica aumentou as concentrações dos ácidos graxos cis9-16:1 e cis9,12-18:2 na gordura do leite. A ingestão de MS foi maior para os tratamentos sem casca de linhaça do que para os tratamentos com casca de linhaça. Além disso, a produção de leite foi diminuída para as vacas que receberam casca de linhaça. A concentração de enterolactona tanto no líquido ruminal como no leite foi maior para as vacas que receberam casca de linhaça quando comparada com as vacas que não receberam casca de linhaça. O poder antioxidante ferroredutor medido no leite foi similar entre os tratamentos. Um Terceiro Experimento in vivo foi conduzido com quatro animais da raça Holandês distribuídos em um delineamento em quadrado latino 4 x 4. Os tratamentos foram: uma dieta controle sem adição de produtos de linhaça (CO), 4,18 g/kg de MS de grãos de linhaça inteiros (LI), 1,87 g/kg de MS de sais de cálcio de óleo de linhaça (SC) e uma mistura de 2,3 g/kg de MS de grãos de linhaça inteiros e 0,83 g/kg de MS de sais de cálcio de óleo de linhaça (LS). A ingestão e digestibilidade da MS, produção e composição do leite, com excessão da gordura, a qual foi menor para SC quando comparado ao CO, mas sem diferença entre SC, LI e LS. Os ácidos graxos (AG) intermediários da biohidrogenação no rúmen foram maiores quando sais de cálcio foram fornecidos e o ácido rumênico (cis9,trans11-18:2) aumentou no tratamento SC comparado ao LI. O AG alfa–linolênico no leite foi maior para SC e LS do que CO, mas não diferiu de LI. O fornecimento de linhaça inteira não alterou a concentração de enterolactona no leite em comparação aos sais de cálcio. Tanto a microflora ruminal como a fecal foram capazes de transformar lignanas vegetais em lignanas mamíferas. Casca de linhaça foi uma boa estratégia para melhorar a composição em ácidos graxos e aumentar a concentração de enterolactona no leite. Sais de cálcio de óleo de linhaça causaram depresão na gordura do leite e grãos de linhaça inteiros não alteraram a concentração de enterolactona no leite.
Abstract: In vitro and in vivo studies were conduced to evaluate the potential of flaxseed to increase concentration of mammalian lignans in milk. In a first trial, flax seeds and hulls were incubated to determine the in vitro conversion of plant lignans from two flax products (hull and seed) into the mammalian lignans enterolactone and enterodiol by bovine ruminal and fecal microbiota. Plant lignans in flax seeds and hulls averaged 9.2 and 32.0 nmol mg`1, respectively. The highest net production of enterodiol at 72 and 96 h of incubation was obtained with flax hulls incubated with fecal microbiota. There was no difference in net production of enterodiol between flax products within the first 24 h of incubation. ln general, net production of enterolactone over the 96 h time course was significantly higher for flax products incubated with ruminal than with fecal microbiota. Net production of enterolactone at 72 and 96 h of incubation was greater for flax hulls than flax seeds. A second experiment, was conducted in vivo with four lactating Holstein cows assigned to a 4 x 4 Latin square design that were fed one of the four treatments: control with no flaxseed hulls (CO), control with flaxseed hulls (FH), monensin (16 ppm) with no flaxseed hulls (MO), and monensin (16 ppm) with flaxseed hulls (HM). The apparent digestibility of CP was higher for diets containing flaxseed hulls and for diets supplemented with monensin. Significant higher digestibility of ether extract was observed for treatments with flaxseed hulls compared with treatments without flaxseed hulls. Feeding flaxseed hulls increased concentrations of total trans fatty acids (FA), monounsaturated FA, polyunsaturated FA, long-chain FA and n-3 FA, and the polyunsaturated to saturated FA ratio in milk fat. The n- 6 to n-3 ratio in milk fat was lower for cows fed flaxseed hulls compared with those fed no flaxseed hulls. Monensin supplementation increased the concentrations of cis9-l6:l and cis9,l2-18:2 in milk fat. Intake of dry matter (DM) was higher for treatments without flaxseed hulls than for treatments with flaxseed hulls. Moreover, milk production was decreased for cows fed flaxseed hulls. Concentration of enterolactone in both ruminal fluid and milk was higher for cows fed flaxseed hulls compared with those fed no flaxseed hulls. Concentration of ferric reducing antioxidant power was similar among treatments. A third experiment was conducted in vivo with four Holstein cows used in a 4 x 4 Latin square design. The four treatments were: a control diet containing no flaxseed products (CO), 4.l8 g/kg DM of whole flaxseed (WF), 1.87 g/kg DM of calcium salts of flaxseed oil (CF) or a mixture of 2.30 g/kg DM of whole flaxseed and 0.83 g/kg DM of calcium salts of flaxseed oil (MF). Dry matter intake, digestibility, and milk production and composition were similar among treatments except for milk fat percentage that was lower for CF compared to CO with no difference between CF and WF and MF. Concentrations of intermediates of biohydrogenation of FA in the rumen were higher when calcium salts of flaxseed oil were fed, and rumenic acid (cis9,transl l-1822) concentration was higher for CF compared to WF treatment. Milk fat concentration of alpha-linolenic acid was higher for CF and MF than CO, but was similar to WF. Feeding whole flaxseed did not alter enterolactone in milk compare to calcium salts of flaxseed oil. Both ruminal and fecal microbiota are able to transform plant lignans into mammalian lignans. Feeding flaxseed hulls was a good strategy to improve milk FA composition and increase enterolactone concentration in milk. Calcium salts of flaxseed oil depressed milk fat concentration and whole flaxseed had no effect on milk enterolactone concentration. |