Biblioteca Digital da UEM: Sistema Nou-Rau

Consultar: Programa de Pós-Graduação em Engenharia Química

Início > Dissertações e Teses > Engenharias > Engenharia Química > Programa de Pós-Graduação em Engenharia Química

Título [PT]: Remoção do corante reativo azul 5G a partir de soluções aquosas utilizando o bagaço do maracujá amarelo como adsorvente
Autor(es): Maraísa Lopes de Menezes
Palavras-chave [PT]:

Bagaço do maracujá amarelo (Passiflora edulis f. flavicarpa). Secagem. Adsorvente. Remoção de corantes. Adsorvente alternativo. Remoção de corante têxtil. Remoção do corante reativo azul 5G. Adsorção de corante. Processo em batelada e processo contínuo. Corante reativo azul 5G. Remoção. Brasil.
Área de concentração: Desenvolvimento de Processos
Titulação: Mestre em Engenharia Química
Banca:
Sueli Teresa Davantel de Barros [Orientador] - UEM
Gilberto da Cunha Gonçalves - UTFPR
Nehemias Curvelo Pereira - UEM
Resumo:
Resumo: O setor têxtil requer grandes volumes de água em seu processo industrial. Seu efluente apresenta um elevado teor em matérias oxidáveis, devido ao uso de diferentes corantes, podendo ocorrer variações significativas no pH. A presença de corantes nos cursos d'água, mesmo em pequenas concentrações, causa alterações nos ciclos biológicos desses meios. O desenvolvimento de tecnologias adequadas para o tratamento destes efluentes tem sido objeto de estudo de grande interesse nas últimas décadas. Vários trabalhos estão sendo desenvolvidos para a utilização de adsorventes não convencionais que possuam características adsortivas comparáveis ao carvão ativado para a remoção de diversos tipos de corantes, como é o caso dos resíduos sólidos agrícolas. O maracujá amarelo, Passiflora edulis f. flavicarpa, nativo do Brasil, é muito utilizado na indústria de suco e seu resíduo geralmente é utilizado para nutrição animal. Desta forma, este trabalho teve por objetivo avaliar a aplicação do bagaço do maracujá amarelo como adsorvente para a remoção do corante reativo azul 5G a partir de soluções aquosas. Para a preparação do adsorvente, realizou-se a secagem do bagaço e para tanto o estudo da melhor condição de secagem. Nos ensaios de secagem, primeiramente determinou-se a umidade inicial do bagaço, cerca de 90,44%, obtida em estufa durante 24 horas à 105 ºC ± 3 ºC. Também foram coletados os valores de massa em função do tempo, utilizando um secador convectivo, operado em quatro temperaturas (35, 45, 55 e 65 º C) e velocidades do ar de 0,8, 1,0 e 1,3 m/s. Por meio das curvas de secagem e de taxa de secagem observou-se que a temperatura exerce grande influência na secagem do bagaço, pois quando se aumenta a temperatura, ocorre uma diminuição do tempo de secagem e um conseqüente aumento na taxa. Buscando-se executar esse processo com economia de tempo e de energia, determinou-se que a melhor condição de secagem do bagaço do maracujá amarelo foi à temperatura de 55°C e velocidade do ar de 1,3m/s. As curvas de secagem e de taxa de secagem foram adequadamente ajustadas aos modelos propostos por Page (1949) e Motta Lima et al.(2002) e aos modelos propostos por Hogdes (1982) e Toffoli (2005), respectivamente. Outros modelos matemáticos também foram ajustados para cada secagem, tais como: Exponencial Simples, Page, Henderson e Pabis, Logaritmo, Exponencial de dois termos e Wang e Singh. A determinação do melhor modelo entre os estudados foi obtida analisando-se o maior R², o menor erro médio e o maior Teste F. Após seco, o bagaço foi triturado em um liquidificador doméstico e caracterizado por medidas de adsorção de N2 (área superficial específica, volume e diâmetro médio de poros) e o tamanho de partículas determinado por granulometria numa faixa de 0,1 a 0,5 mm. Para os ensaios de adsorção em batelada foi avaliada a influência dos seguintes parâmetros: do tamanho de partícula e do pH da solução de corante, o tempo de equilíbrio da solução em concentrações de 25 a 100 ppm sob agitação controlada à 60 e 150 rpm, as isotermas de adsorção nas temperaturas de 25ºC e 40ºC e também foi realizado o estudo da dessorção do bagaço. Os resultados mostraram que as melhores condições para a adsorção em batelada foram na granulometria de 0,106 mm, pH 2, tempo de equilíbrio de 30 minutos, agitação de 60 rpm, sendo observado que a temperatura não influenciou significativamente na adsorção. Além disso, independente das concentrações estudadas, a porcentagem de remoção do corante da solução foi alta, em torno de 90%, mostrando que o bagaço do maracujá é uma boa alternativa de adsorvente. Para os ensaios em coluna de leito fixo, variou-se a altura do leito em 15 e 23 cm, a vazão de alimentação de 1 à 4 mL/min e a concentração inicial da solução aquosa em 35, 50 e 70, utilizando-se partículas de tamanho médio de 0,5 mm na temperatura de 25ºC. Neste estudo, determinou-se que as melhores condições operacionais para a coluna de adsorção foram: vazão de 1 mL/min, concentração da solução de 35 ppm e altura do leito de 23 cm, na qual foi obtida uma maior quantidade de corante removida, cerca de 24,1495 mg corante/g adsorvente.

Abstract: The textile sector requires the use of great amounts of water in its industrial processes. Its effluent contains a high level of oxidable matter, because of the use of different dyes, which might cause significant pH variations. The presence of dyes in river streams, even at small concentrations, causes changes at the biological cycles of these means. The development of appropriate technologies for treating these effluents has been a very common object of study in the last decades. Many studies have been carried out for the use of non-conventional adsorbents which have adsorptive characteristics comparable to activated coal for the removal of various kinds of dyes, such as solid agricultural residues. The yellow passion fruit, Passiflora edulis f. flavicarpa, originally from Brazil, is very commonly used in juice industry which residue is generally used for animal feeding. Thus, this study aimed at assessing the application of yellow passion fruit bagasse as an adsorbent for the removal of reactive blue dye 5G from aqueous solutions. To prepare the adsorbent it was realized the bagasse drying then to study its best condition. Firstly, the initial bagasse moisture was determined, at about 90.44%, obtained in stove for 24 hours at 105 ºC ± 3 ºC. It was also collected the mass values in function of time, by using a convective drier, operated at four different temperatures (35, 45, 55 and 65 º C) and air flux speeds at 0.8, 1.0 and 1.3 m/s. By means of the drying curves and the drying rate, it could be observed that the temperature highly influences on the bagasse drying process, once as the temperatures increase, the drying time decreases, and then the drying rate becomes higher. In order to perform this process with time and energy economy, it was verified that the best condition for drying yellow passion fruit bagasse was at 55°C and 1.3m/s of air flux speed. The drying curves and the drying rate were adequately adjusted to the models proposed by Page (1949) and Motta Lima et al. (2002) and the models proposed by Hogdes (1982) and Toffoli (2005), respectively. Other mathematical models were also adjusted for each drying process, such as: Simple Exponential, Page, Henderson and Pabis, Logarithm, two-term exponential model and Wang and Singh. The best model was chosen according to the results of the analyses of the highest R², the lowest mean error and the highest F-test. After dried, the bagasse was ground in a domestic blender and characterized by N2 adsorption measurements (specific superficial area, and average pores volume and diameter) and the size of particles determined by granulometry at a range between 0.1 and 0.5 mm. For trials of batch adsorption, the influence of the particle size and the dye solution pH, solution equilibrium time, at concentrations from 25 to 100 ppm under controlled shaking at 60 and 150 rpm, the adsorption isotherms at 25ºC and 40ºC and the bagasse desorption study were evaluated. The results showed that the best conditions for batch adsorption were in granulometry at 0,106 mm, pH 2, 30 minutes of equilibrium time, 60 rpm shaking, and it was observed that the temperature had no significant influence in adsorption. Furthermore, independent of the studied concentrations, the percentage of dye removing was about 90% which means that the passion fruit bagasse is a good alternative as an adsorbent. For assessing the conditions at stationary phase column, the phase was varied from 15 to 23 cm, with the use of particles of 0.5 mm average size, with feeding fluid dynamics variations from 1 to 4 mL/min and the initial concentration of aqueous solution at 35, 50 and 70 ppm at 25ºC. In this study, it was determined that the best operational conditions for the adsorption column were: fluids dynamics at 1mL/min, concentration of 35 ppm and 23 cm of phase height, in which was obtained a higher quantity of dye removal, about 24,1495 mg dye/g adsorbent.
Data da defesa: 23/02/2010
Código: vtls000178591
Informações adicionais:
Idioma: Português
Data de Publicação: 2010
Local de Publicação: Maringá, PR
Orientador: Prof.ª Dr.ª Sueli Teresa Davantel de Barros ; Prof.ª Dr.ª Onélia Aparecida Andreo dos Santos
Instituição: Universidade Estadual de Maringá. Departamento de Engenharia Química
Nível: Dissertação (mestrado em Engenharia Química)/
UEM: Programa de Pós-graduação em Engenharia Química

Responsavel: beth
Categoria: Aplicação
Formato: Documento PDF
Arquivo: Microsoft Word - Dissertação Mestrado-Maraísa.pdf
Tamanho: 2189 Kb (2241533 bytes)
Criado: 22-06-2010 10:25
Atualizado: 22-06-2010 10:35
Visitas: 1755
Downloads: 59

[Visualizar]  [Download]

Todo material disponível neste sistema é de propriedade e responsabilidade de seus autores.

Voltar