Biblioteca Digital da UEM: Sistema Nou-Rau

Consultar: Programa de Pós-Graduação em Engenharia Mecânica

Início > Dissertações e Teses > Engenharias > Engenharia Mecânica > Programa de Pós-Graduação em Engenharia Mecânica

Título [PT]: Blendas de PEBD/amido termoplástico utilizando nanosílica silanizada como compatibilizante
Título [EN]: Blends of LDPE/ thermoplastic starch using nanosilica silanized as compatibilizer.
Autor(es): Fernado Luis Panin Lopes
Palavras-chave [PT]:

Amido termoplástico. Blendas de amido termoplástico. Polietileno de baixa densidade. Nanosílica silanizada. Compatibilizante. Propriedades mecânicas. Blendas poliméricas. Brasil.
Palavras-chave [EN]:
Thermoplastic starch. Low density polyethylene. Polymer blends. Silanized nanosilica. Brazil.
Área de concentração: Materiais
Titulação: Mestre em Engenharia Mecânica
Banca:
Silvia Luciana Fávaro [Orientador] - UEM
Andrelson Wellington Rinaldi - UEM
Sandro Aurélio de Souza Venter - UFTPR
Resumo:
Resumo: O amido apresenta propriedades mecânicas, químicas e físicas interessantes do ponto de vista de processamento e aplicação. Uma das formas encontradas para melhorar as propriedades do amido e que tem sido empregada com sucesso na fabricação de produtos industriais é a composição do amido com outros polímeros para dar origem a blendas poliméricas. Entre os polímeros de maior interesse para formar blendas com o amido termoplástico (TPS) se destaca o polietileno de baixa densidade (PEBD) que apresenta baixo custo, sendo um dos materiais mais empregados na produção de filmes para embalagens, filmes para agricultura e outras aplicações. Assim, nota-se que diversos estudos de blendas com amido termoplástico têm sido realizados em busca de melhores resultados nos ensaios mecânicos e também visando uma diminuição da hidrofobicidade do amido para que desenvolva um biomaterial que possa ser utilizado comercialmente. Diante do exposto, este estudo teve por objetivo obter blendas de TPS com PEBD utilizando nanosílica silanizada (nSS) como compatibilizante. Realizou-se um estudo fatorial 22 com ponto central e análise morfológica para avaliar a influência e interação da nanosílica e do plastificante glicerol na obtenção de um TPS com características hidrofóbicas, avaliando as propriedades de absorção de água, solubilidade e ângulo de contato. A partir disso conclui-se que a amostra de TPS com 30% de glicerol e 5% de nanosílica obteve melhores resultados. As blendas com PEBD e TPS foram obtidas em uma segunda etapa por extrusão e injeção, processando misturas nas proporções em massa de 80, 60 e 40% de PEBD com TPS puro e TPS modificado com nanosílica silanizada (nSS). A composição das blendas continha TPS puro e com adição de 5% de nSS, ambos com 30% de glicerol. As blendas foram analisadas e caracterizadas através dos ensaios de Calorimetria Exploratória Diferencial (DSC), Difração de Raios-X (DRX), resistência à tração, resistência à flexão, resistência ao impacto Izod, dureza Shore D, microscopia eletrônica de varredura (MEV), ensaio de degradação, além dos ensaios citados no estudo fatorial. As blendas contendo nanosílica como compatibilizante apresentaram menor solubilidade quando comparada as blendas de TPS puro. A partir dos ensaios de resistência a tração conclui-se que quanto maior a quantidade de TPS menor é a tensão máxima de ruptura e o alongamento, entretanto notou-se que as blendas de mesma proporção, mas contendo a nanosílica obtiveram um aumento da tensão máxima de ruptura e redução do alongamento. Quanto ao módulo de elasticidade nota-se também que quanto maior a quantidade de TPS e nSS mais rígida é a blenda. Em relação ao ensaio mecânico de impacto constatou-se que as blendas com maior quantidade de TPS com sílica são menos resistentes ao impacto, entretanto a blenda com melhor desempenho foi a de menor quantidade de TPS contendo sílica. Quanto aos ensaios de dureza e de flexão verifica-se que as blendas com nanosílica apresentaram melhora nestas propriedades quando comparadas as blendas sem nanosílica, demonstrando que a inclusão de nSS aumenta a dureza e rigidez dessas amostras. Por fim, conclui-se que a presença de nanosílica contribui para a diminuição da hidrofilicidade do amido melhorando a interação PEBD/TPS. No ensaio de biodegradação as blendas foram aterradas por 30 e 60 dias e logo após foram analisadas quanto a resistência a tração, na qual a tensão máxima diminui de acordo com aumento do tempo de exposição ao solo, para a maioria das formulações. Já para os resultados de módulo elástico observou-se redução drástica nestes valores para as blendas poliméricas. Na microscopia eletrônica de varredura, notou-se pouco efeito visual da degradação ambiental sobre a superfície de PEBD. Entretanto para as blendas enterradas por 30 e 60 dias há grande concentração de defeitos na superfície das amostras, indicando uma maior biodegradabilidade das blendas em relação ao amido puro.

Abstract: Starch presents mechanical properties, chemical and physical interesting of viewpoint of processing and application. One form found to improve starch properties and has been successfully employed in the manufacture of industrial products is the starch composition with other polymers to give polymer blends. Among the polymers of greatest interest to form blends with the thermoplastic starch (TPS) stands low density polyethylene (LDPE) having low cost, being one of the materials used in the production of packaging films, films for agriculture and other applications . Thus, it is noted that several studies with thermoplastic starch blends have been made in search of better results in the mechanical tests and aiming a decrease in the hydrophobicity of the starch to develop a biomaterial that can be used commercially. Given the above, this study aimed to obtain TPS blends with LDPE using nanosílica silanized (nSS) as compatibilizer. We conducted a factorial study 22 with center point and morphological analysis to evaluate the influence and interaction of nanosílica and plasticizer glycerol in getting a TPS with hydrophobic characteristics, evaluating the properties of water absorption, solubility and contact angle. From this it is concluded that the sample of TPS with 30% glycerol and 5% nanosílica better results. The blends with LDPE and TPS were obtained in a second step by extrusion and injection processing mixtures in mass proportions of 80, 60 and 40% of LDPE with pure TPS and TPS modified silanized nanosílica (nSS). The composition of the blends contained pure TPS and with addition of 5% NSS, both with 30% glycerol. The blends were analyzed and characterized as Differential Scanning Calorimetry (DSC), X-Ray Diffraction (XRD), tensile strength, flexural strength, Izod impact strength, Shore hardness D, scanning electron microscopy (SEM) and degradation test, in addition to the tests listed in the factorial study.. The blends containing nanosílica as compatibilizer had lower solubility compared the blends of pure TPS. From the traction resistance tests it was concluded that the greater the amount of low TPS is the maximum stress at rupture and elongation, however it noted that blends of the same amount, but containing the nanosílica obtained an increase of the maximum tension rupture elongation and reduction. The modulus of elasticity is noted also that the higher the amount of TPS and nSS the blend is stiffer. In relation to mechanical impact test it was found that the blends with higher silica with TPS are less impact resistant, however the blend with improved performance was the lowest amount of TPS containing silica. The testing of hardness and bending it appears that blends with nanosílica showed improvement in these properties when compared to blends without nanosílica, demonstrating that the inclusion nSS increases the hardness and stiffness of these samples. Finally, it is concluded that the presence of nanosílica contributes to reducing the hydrophilicity of the starch improving LDPE / TPS interaction. In the biodegradation test blends were grounded and 60 for 30 days and then were analyzed for tensile strength, in which the maximum voltage decreases with increasing time of exposure to soil for most formulations. As for the results of elastic modulus observed drastic reduction in these values for the polymer blends. In scanning electron microscopy, it noticed some visual effect of environmental degradation on the surface of LDPE. However for the blends buried for 30 to 60 days there is a great concentration of defects on the surface of samples, indicating a higher biodegradability of the blends compared to pure starch.
Data da defesa: 21/08/2015
Código: vtls000220370
Informações adicionais:
Idioma: Português
Data de Publicação: 2015
Local de Publicação: Maringá, PR
Orientador: Prof.ª Dr.ª Silvia Luciana Fávaro
Co-Orientador: Prof. Dr. Eduardo Radovanovic
Instituição: Universidade Estadual de Maringá . Centro de Tecnologia . Programa de Pós-Graduação em Engenharia Mecânica
Nível: Dissertação (mestrado em Engenharia Mecânica)/
UEM: Departamento de Engenharia Mecânica

Responsavel: beth
Categoria: Aplicação
Formato: Documento PDF
Arquivo: dissertação 27092015- Impressão final (1).pdf
Tamanho: 3772 Kb (3862756 bytes)
Criado: 28-09-2016 08:58
Atualizado: 28-09-2016 09:05
Visitas: 692
Downloads: 8

[Visualizar]  [Download]

Todo material disponível neste sistema é de propriedade e responsabilidade de seus autores.

Voltar