Biblioteca Digital da UEM: Sistema Nou-Rau

Consultar: Programa de Pós-Graduação em Engenharia Química

Início > Dissertações e Teses > Engenharias > Engenharia Química > Programa de Pós-Graduação em Engenharia Química

Título [PT]: Identificação dos mecanismos de sorção em diferentes sólidos
Título [EN]: Identification of the sorption mechanism in different solid
Autor(es): Hélida Monique Cordasso Fagnani
Palavras-chave [PT]:

Mecanismos de sorção. Zeólita NaY.. Sílica gel. Adsorção. Troca iônica. Brasil.
Área de concentração: Desenvolvimento de processos
Titulação: Mestre em Engenharia Química
Banca:
Pedro Augusto Arroyo [Orientador] - UEM
Indianara Conceição Ostroski - UFG
Maria Angélica Simões Dornellas de Barros - UEM
Resumo:
Resumo: A existência de metais em efluentes pode causar danos tanto à saúde humana quanto à indústria, pois metais como cálcio e magnésio são responsáveis pela dureza da água. Assim, é imprescindível a remoção desses contaminantes. Os processos de adsorção e troca iônica vêm se constituindo em métodos eficientes e de baixo custo operacional. Porém, são fenômenos semelhantes e que podem ocorrer simultaneamente, proporcionando dificuldade quanto ao dimensionamento de equipamentos no tratamento de resíduos. Parâmetros, tais como o pH do efluente, podem tornar um processo de tratamento nem sempre favorável. Neste contexto, o objetivo deste trabalho foi avaliar o mecanismo de sorção de íons metálicos, em diferentes materiais sólidos. O estudo foi realizado para um material exclusivamente adsorvente (sílica gel) e outro com grande capacidade de troca iônica (zeólita NaY). A sílica gel é um polímero inorgânico amorfo, formado por unidades tetraédricas de SiO2 distribuídas aleatoriamente. Já a zeólita NaY é um material cristalino, formado por tetraedros de AlO4- e SiO4, que originam uma estrutura microporosa. Estes adsorventes foram caracterizados por: ponto de carga zero, adsorção/dessorção de N2, espectroscopia no infravermelho e difração de raio X. Estudos cinéticos e de equilíbrio foram realizados para a sorção dos íons de Ca2+ e Mg2+, além da medição do pH da solução após cada ensaio. Estes estudos junto com as caracterizações dos adsorventes, possibilitaram a identificação do mecanismo de sorção da sílica gel e da zeólita NaY. Os modelos cinéticos de pseudo-primeira ordem, pseudo-segunda ordem e difusão intrapartícula foram ajustados aos dados experimentais obtidos. Para os testes de equilíbrio foram ajustados os modelos de Langmuir, Freundlich e Langmuir-Freundlich. Para a zeólita NaY, o mecanismo de troca iônica é realizado entre o íon Na+ que é liberado com o íon Ca2+ ou Mg2+ que é sorvido. Logo, a diferença que há entre a quantidade sorvida pela liberada é o mecanismo adsorção. Assim o mecanismo que prevalece na zeólita NaY é o de troca iônica. O pHPCZ da zeólita NaY é 6,3 e a maior capacidade de sorção foi no pH 4,3. Quando o adsorvente é submetido à uma solução de pH diferente ao seu pHPCZ, são geradas cargas na superfície deste material. Neste caso, o pH 4,3 gera cargas positivas, estes íons atraem os cloretos que estão presentes na solução que, por consequência, atraem os íons metálicos da solução. Simultaneamente, ocorre a troca iônica dos íons Na+ da zeólita NaY com os íons Ca2+ ou Mg2+ que estão em solução. Em pH 8,3, a zeólita NaY realiza a troca iônica dos íons Na+ com os íons Ca2+ ou Mg2+ da solução, e devido a superfície do adsorvente estar carregada negativamente, ocorre, também, a atração dos íons metálicos Ca2+ ou Mg2+ da solução. Em pH 6,3, ocorre somente a troca iônica do Na+com Ca2+ ou Mg2+ e a adsorção, porém esta com menor intensidade. Em sílica gel, ocorre atrações entre superfície e íons em solução, porém o mecanismo que prevalece é a adsorção. Em pH 4,7 ocorre somente o processo de adsorção, em pH6,7 as cargas negativas geradas na superfície do adsorvente atraem os íons Ca2+ ou Mg2+ e, em pH 2,7 as cargas positivas geradas na superfície repelem os íons Ca2+ ou Mg2+. Para a zeólita NaY o modelo mais representativo dos dados de sorção obtidos foi o de pseudo-primeira ordem, indicando que a sorção foi precedida por difusão por meio de uma camada limite. Para a sílica gel o modelo de pseudo-segunda ordem melhor se ajustou, assumindo que a adsorção forte é a etapa de controle de velocidade dos processos de adsorção. Já o modelo de isoterma que melhor se ajustou, tanto a zeólita NaY quando a sílica gel, foi o de modelo de Langmuir-Freundlich. Este modelo demonstrou que a força de atração adsorvente-adsorvato é mais forte no pHPCZ de ambos adsorventes. Concluindo, que na zeólita NaY a troca iônica tem grande força de atração adsorvente-adsorvato e, que as outras atrações que ocorrem entre adsorvente-adsorvato são forças fracas. De forma similar foi observado na sílica gel, a adsorção tem grande força de atração adsorvente-adsorvato e as demais atrações são fracas.

Abstract: The existence of metals in wastewater can cause damage to both human health as industry, because metals like calcium and magnesium are responsible for water hardness. Therefore, it is essential to remove these contaminants. The processes of adsorption and ion exchange are methods that are efficient and low operating cost. However, are similar phenomena and may occur simultaneously, providing difficulties related to the design of equipment for the treatment of waste. Parameter such as the pH of the effluent may become a favorable process in an unfavorable. In this context, the aim of this study was to evaluate the mechanism of sorption of metal ions, in different solids. The study was conducted with an exclusively adsorbent material (silica gel) and one with high capacity ion exchange (zeolite NaY). Silica gel is an amorphous inorganic polymer, formed by tetrahedral units of SiO2 randomly distributed. The zeolite NaY is a crystalline material formed by tetrahedrons of SiO4 and AlO4-, which originate from a microporous structure. These adsorbents were characterized by zero point of charge (PZC), adsorption/desorption of N2, Fourier transform infrared (FTIR), X-ray diffraction (XDR). Kinetic and equilibrium investigation were conducted for the sorption of ions Ca2+ and Mg2+, in addition to measuring the pH of the solution after each test. These studies, together with the characterizations of the adsorbents, allowed identification of the mechanism of sorption of silica gel and zeolite NaY. The kinetic models of pseudo-first-order, pseudo-second-order and intraparticle diffusion were adjusted to the experimental data obtained. To equilibrium tests, models of Langmuir, Freundlich and Langmuir-Freundlich were adjusted. For zeolite NaY, the ion exchange mechanism is performed between the Na+ ion that is released with the ion Ca2+ or Mg2+ is sorbed. Thus, the difference that exists between the amounts sorbed by the released is the adsorption mechanism. Therefore, the mechanism that prevails in zeolite NaY is ion exchange. The PZC of zeolite NaY is 6.3 and the highest sorption capacity was at pH 4.3. When the adsorbent is submitted to a solution of pH different of PCZ, charges are generated on the surface of this material. In this case, the pH 4.3 of solution generates positive charges, these ions attract the chlorides that are present in the solution, therefore, attract metal ions from solution. Simultaneously, the ion exchange of Na+ ions from zeolite NaY with Ca2+ or Mg2+ ions that are in solution occurs. At pH 8.3, the zeolite NaY performs the ion exchange of Na+ ions with Ca2+ or Mg2+ ions of the solution, and due to the adsorbent surface is negatively charged, occurs also the attraction of metal ions Ca2+ or Mg2+ from solution. At pH 6.3, occurs only ion exchange of Na+ ion with Ca2+ or Mg2+ ion and adsorption, but this less intense. Silica gel, attractions between the surface and ions in solution occurs, but the mechanism is that adsorption takes prevail. At pH 4.7 only the adsorption occurs, at pH 6.7 the negative charges generated on the surface of the adsorbent attract Ca2+ or Mg2+ ions, and pH 2.7 the positive charges generated on the surface repel Ca2+ or Mg2+ ions. For zeolite NaY, the most representative model sorption data obtained was the pseudo-first-order, indicating that the sorption was preceded by diffusion through a boundary layer. For silica gel, the model pseudo-second-order better adjusted, assuming that strong adsorption is the stage that control the speed of the adsorption. In addition, the isotherm model best fit for zeolite NaY and silica gel was the Langmuir-Freundlich model. This model showed that the force of attraction adsorbent-adsorbate is stronger in PZC for both adsorbents. Concluding that in zeolite NaY the ion exchange has great power of attraction adsorbent-adsorbate and, other attractions that occur between adsorbent-adsorbate are weak forces. Similarly, has been observed in silica gel, theadsorption has great power of attraction adsorbent-adsorbate and other attractions are weak.
Data da defesa: 27/06/2014
Código: vtls000221850
Informações adicionais:
Idioma: Português
Data de Publicação: 2014
Local de Publicação: Maringá, PR
Orientador: Prof. Dr. Pedro Augusto Arroyo
Instituição: Universidade Estadual de Maringá. Centro de Tecnologia. Programa de Pós-Graduação em Engenharia Química
Nível: Dissertação (mestrado em Engenharia Química)
UEM: Departamento de Engenharia Química

Responsavel: elaine
Categoria: Aplicação
Formato: Documento PDF
Arquivo: Dissertação - Helida M. C. Fagnani.pdf
Tamanho: 1651 Kb (1690858 bytes)
Criado: 29-06-2016 15:14
Atualizado: 29-06-2016 15:21
Visitas: 829
Downloads: 12

[Visualizar]  [Download]

Todo material disponível neste sistema é de propriedade e responsabilidade de seus autores.

Voltar