Resumo: Para este trabalho foi construído um equipamento ainda em escala de laboratório para caracterização hidrodinâmica e a transferência de massa de um leito fluidizado trifásico concorrente com fase contínua líquida. Os fluidos utilizados foram a água e o ar comprimido. A fase sólida constituiu-se de partículas de PVC com densidade entre 1,3 e 1,4 de forma cilíndrica, cúbica e irregular. Na hidrodinâmica foram estudadas a expansão do leito, o holdup individual das fases, a queda de pressão e a velocidade mínima de fluidização com vazão de gás entre O e 38,5 cm3/s e velocidade do líquido até 7 cmls. Estudos de transferência de massa foram efetuados com o leito fluidizado através de medidas do coeficiente de transferência de massa volumétrico. O holdup da fase gasosa foi medido pelo método de EFREMOV E VAKRUSHEV( 1970) e o coeficiente de transferência de massa volumétrico foi medido pelo método que envolve reação química lenta em estado transiente. Resultados demonstraram que: as expansões do leito fluidizado foram diferentes para as três partículas utilizadas. O holdup da fase gasosa aumentou com a vazão do gás e diminuiu com a vazão/velocidade do líquido e não se distinguiu o efeito da forma das partículas. A queda de pressão foi maior para as partículas cilíndricas seguindo as cúbicas e a menor queda de pressão foi para as partículas irregulares. Foi notado que a velocidade mínima de fluidização diminuiu com a presença do gás, não havendo diferença significativa entre as velocidades mínimas de fluidização para alturas estáticas diferentes. As velocidades mínimas de fluidização para as partículas cilíndricas e cúbicas foram muito próximas, já as partículas irregulares tiveram uma maior velocidade mínima de fluidização. Embora o coeficiente de transferência de massa volumétrico seja dependente do distribuidor gás-líquido pôde-se verificar que o coeficiente de transferência de massa volumétrico aumentou com a vazão do gás e com a velocidade do líquido nas condições de operação utilizadas. A presença de partículas na maioria da condições de operação fizeram com que valores de coeficiente de transferência de massa volumétrico no leito fossem levemente maiores que os do coeficiente de transferência de massa volumétrico em coluna de borbulhamento (sem partículas). Indicando estes resultados que as partículas possuíram um leve efeito de quebrar as bolhas.
Abstract: In this work a laboratory scale three-phase fluidized bed equipment was built. The hidrodynamic and mass transfer of concurrent gas-liquid upwards flow, has been characterized. The fluid phase were air and tap water, and solids where made of PVC, either cylíndrical, cubic and irregular shaped particles, with density varying between 1.3 e 1.4 g/cm3. The study of hidrodynamic included bed expansion, the individual phase holdup, the pressure drop and minimum fluidization velocity under gas flow rate varying from 0 to 38.5 cm3/s and liquid velocity up to 7 cm/s. Mass transfer studies in fluidized bed was center in volume mass transfer coefficient. The gas holdup was measured according to EFREMOV E VAKRUSHEV (1970) method is and the volume mass transfer coefficient was measured by a method envolving a slow chemical reaction under transient condition. Experimental data has shown that bed exansion was different for the three types of particles used. The gas holdup increases with gas flowrate and diminishes with greater liquid flowrate, while the different shaped particles used had neglible effect. The pressure drop is greater for cylindrical particles, smaller for irregular particles and cubics particles behave intermediately. Minimum fluidization velocity was not significantly affected by bed height, it decreases with higher gas flow rate, was similar for cylindrical and cubic shaped particles and greater for irregular shaped particles. The volume mass transfer coefficient (KLA) is highly depended of gas-liquid distributer design. In spite of this, within the range of conditions used, KLA increases with both gas liquid flowrates. For the same flow condition the three-phase fluidized bed has a higher mass transfer than the equivalent bubble column, showing that the effect of the particles is to break the bubble and increse the volume mass transfer coefficient. |