Resumo: Esta tese aborda o estudo da estabilidade orbital de ondas viajantes periódicas relacionadas a três importantes equações dispersivas não lineares. Inicialmente, estudamos a estabilidade orbital com perfil dnoidal associada a equação de Kawahara baseando-se nos argumentos desenvolvidos em [7] e [13]. Num segundo momento, motivados pelo trabalho apresentado em [28], determinamos resultados de boa colocação bem como a estabilidade orbital de ondas viajantes periódicas relacionadas a equação logarítmica de Korteweg-de Vries. Neste contexto, construímos uma superfície suave de ondas periódicas utilizando um aperfeiçoamento da teoria desenvolvida em [63]. O mesmo trabalho foi utilizado para estabelecermos as propriedades espectrais do operador linearizado em torno da onda periódica. Após este ocorrido, uma adaptação das teorias de estabilidade contidas em [45], [54] e [79] foi apresentada afim de obtermos nossos resultados de estabilidade. Por fim, apresentamos um novo critério para se obter a estabilidade orbital de ondas periódicas relacionadas a uma classe geral de equações dispersivas regularizadas. O estudo é baseado nas recentes ideias desenvolvidas em [6] e possui, como aplicação direta do nosso método, o fato de que uma classe especial de equações regularizadas fracionárias de Korteweg-de Vries sempre admite ondas periódicas estáveis
Abstract: This thesis concerns the study of orbital stability of periodic traveling waves related for three important nonlinear dispersive equations. Initially, we study the orbital stability with dnoidal pro_le associated to the Kwahara equation based on the arguments developed in [7] and [13]. After, motivated by [28], we determine a global well-posedness result as well as the orbital stability of periodic waves related to the logarithmic Korteweg-de Vries equation. To do so, we have presented a smooth surface of periodic waves by using an improvement of the theory in [63]. The same work was used to establish the spectral properties of the linearized operator around the periodic wave. Next, an adaptation of the stablity theories developed in [45], [54] and [79] were presented to get our stability results. Final, we showed a new criterion to obtain the orbital stability of periodic traveling waves related to a general class of regularized dispersive equations. The study is based on the recent ideas from [6] and it has, as a direct application of our method, the fact that a special class of regularized fractionary Korteweg-de Vries equations always admit stable periodic waves |